TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141892 times)
  2. FAT32 Library (75039 times)
  3. Network Ethernet Library (59344 times)
  4. USB Device Library (49347 times)
  5. Network WiFi Library (45156 times)
  6. FT800 Library (44701 times)
  7. GSM click (31300 times)
  8. mikroSDK (30264 times)
  9. microSD click (27685 times)
  10. PID Library (27576 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

WiFi 11 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: WIFI

Downloaded: 442 times

Not followed.

License: MIT license  

WiFi 11 Click is a compact add-on board that contains a WiFi and Bluetooth module that has dual bands for WiFi communication. This board features the BW16, a low-power dual bands Wireless LAN (WLAN) and Bluetooth Low Energy SoC module from Ai-Thinker.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "WiFi 11 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "WiFi 11 Click" changes.

Do you want to report abuse regarding "WiFi 11 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


WiFi 11 Click

WiFi 11 Click is a compact add-on board that contains a WiFi and Bluetooth module that has dual bands for WiFi communication. This board features the BW16, a low-power dual bands Wireless LAN (WLAN) and Bluetooth Low Energy SoC module from Ai-Thinker.

wifi11_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : UART type

Software Support

We provide a library for the Wifi11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Wifi11 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void wifi11_cfg_setup ( wifi11_cfg_t *cfg );

  • Initialization function.

    WIFI11_RETVAL wifi11_init ( wifi11_t ctx, wifi11_cfg_t cfg );

  • Device reset function.

    void wifi11_reset_device ( wifi11_t *ctx );

Example key functions :

  • Send command function.

    void wifi11_send_cmd ( wifi11_t ctx, char cmd );

  • Create TCP/UDP server function.

    void wifi11_create_tcp_udp_server ( wifi11_t *ctx, uint8_t mode, uint16_t port );

  • Connect to AP function.

    void wifi11_connect_to_ap ( wifi11_t ctx, char ssid, char *password );

Examples Description

This example reads and processes data from WiFi 11 clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and powers up the module, then connects to the desired AP and creates TCP and UDP servers on the desired local port.


void application_init ( void )
{
    log_cfg_t log_cfg;
    wifi11_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    wifi11_cfg_setup( &cfg );
    WIFI11_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    wifi11_init( &wifi11, &cfg );
    Delay_ms ( 100 );

    wifi11_reset_device( &wifi11 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    // dummy read
    wifi11_process( );
    wifi11_clear_app_buf( );

    log_printf( &logger, "\r\n ---- Common commands ---- \r\n" );
    Delay_ms ( 500 );

    // Test AT command ready
    wifi11_send_cmd( &wifi11, WIFI11_CMD_AT );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    // Query version info
    wifi11_send_cmd( &wifi11, WIFI11_CMD_ATSV );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    log_printf( &logger, "\r\n ---- WiFi commands ---- \r\n" );
    Delay_ms ( 500 );

    // Set WiFi mode - Station
    wifi11_send_cmd_with_parameter( &wifi11, WIFI11_CMD_ATPW, "1" );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    // Connect to AP
    wifi11_connect_to_ap( &wifi11, AP_SSID, AP_PASSWORD );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    // Wifi information
    wifi11_send_cmd( &wifi11, WIFI11_CMD_ATW );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    log_printf( &logger, "\r\n ---- TCP/IP commands ---- \r\n" );
    Delay_ms ( 500 );

    // Create TCP Server
    wifi11_create_tcp_udp_server( &wifi11, WIFI11_TCP_MODE, LOCAL_PORT );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    // Create UDP Server
    wifi11_create_tcp_udp_server( &wifi11, WIFI11_UDP_MODE, LOCAL_PORT );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    // Enable auto receive data mode
    wifi11_send_cmd_with_parameter( &wifi11, WIFI11_CMD_ATPK, "1" );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    // Check network connection status
    wifi11_send_cmd( &wifi11, WIFI11_CMD_ATPI );
    app_error_flag = wifi11_rsp_check( );
    wifi11_error_check( app_error_flag );
    Delay_ms ( 500 );

    log_printf( &logger, "\r\n ---- Please connect to the TCP/UDP server listed above via" );
    log_printf( &logger, " a TCP/UDP client ---- \r\n" ); 
}

Application Task

Logs all the received data and module's responses on the USB UART.


void application_task ( void )
{
    wifi11_process( );
    wifi11_log_app_buf( );
} 

Note

In order for the example to work, user needs to set the AP SSID, password, and Local port on which the TCP and UDP servers will be created. Enter valid data for the following macros: AP_SSID, AP_PASSWORD and LOCAL_PORT.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Wifi11

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Air Quality 12 Click

0

Air Quality 12 Click is a compact add-on board for monitoring indoor air quality. This board features the RRH46410, a digital gas sensor module from Renesas, which integrates advanced sensing technology for precise detection of total volatile organic compounds (TVOC), indoor air quality (IAQ), and estimated carbon dioxide levels (eCO2). This module features a MEMS gas sensing element with a metal oxide (MOx) chemiresistor, a CMOS signal conditioning IC, and an onboard MCU, offering a complete, self-contained solution with low power consumption and support for both UART and I2C communication.

[Learn More]

OBDII Click

0

OBDII Click offers a unique opportunity to tap into the car diagnostic systems. It features the STN1110 Multiprotocol OBD to UART Interface, developed by the ScanTool technologies. This Click can be used for the communication with the Electronic Control Unit (ECU) of a vehicle, via several different OBD II diagnostic protocols such as CAN, K LINE, L LINE and J1850. The STN1110 IC is used to process requests sent by the MCU via the UART interface and return back the responses from the ECU network nodes.

[Learn More]

LED Flash click

0

LED Flash click functions as a high power LED flash, and carries the CAT3224 flash LED driver. The click is designed to run on a 5V power supply. It communicates with the target microcontroller over the following pins on the mikroBUS line: AN, RST, PWM, and INT.

[Learn More]