TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141695 times)
  2. FAT32 Library (74760 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44528 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

XSENS MTi-3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 195 times

Not followed.

License: MIT license  

XSENS MTi-3 Click is a compact add-on board that contains a fully functional module that can be configured as an Inertial Measurement Unit, Vertical reference Unit, or even an Attitude & Heading Reference System. This board features the MTi-3, a module outputting 3D orientation, 3D rate of turn, 3D accelerations, and 3D magnetic field, depending on the product configuration from Xsens.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "XSENS MTi-3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "XSENS MTi-3 Click" changes.

Do you want to report abuse regarding "XSENS MTi-3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


XSENS MTi-3 Click

XSENS MTi-3 Click is a compact add-on board that contains a fully functional module that can be configured as an Inertial Measurement Unit, Vertical reference Unit, or even an Attitude & Heading Reference System. This board features the MTi-3, a module outputting 3D orientation, 3D rate of turn, 3D accelerations, and 3D magnetic field, depending on the product configuration from Xsens.

xsensmti3_click.png

Click Product page


Click library

  • Author : Mikroe Team
  • Date : Sep 2021.
  • Type : UART type

Software Support

We provide a library for the XSENSMTi3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for XSENSMTi3 Click driver.

Standard key functions :

  • xsensmti3_cfg_setup Config Object Initialization function.

    void xsensmti3_cfg_setup ( xsensmti3_cfg_t *cfg );
  • xsensmti3_init Initialization function.

    err_t xsensmti3_init ( xsensmti3_t *ctx, xsensmti3_cfg_t *cfg );

Example key functions :

  • xsensmti3_parser XSENS MTi-3 general parser.

    void xsensmti3_parser ( uint8_t *rsp_buf, uint8_t start_cnt, xsensmti3_parse_t *obj );
  • xsensmti3_get_data XSENS MTi-3 get Roll, Pitch and Yaw.

    void xsensmti3_get_data( xsensmti3_quat_t *quat_obj, xsensmti3_data_t *data_obj );
  • xsensmti3_check_package XSENS MTi-3 checks package.

    err_t xsensmti3_check_package( uint8_t *package_buf, uint8_t *start_package );

Example Description

This example reads and processes data from XSENS MTi-3 clicks.

The demo application is composed of two sections :

Application Init

Initializes driver and wake-up module.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    xsensmti3_cfg_t xsensmti3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    xsensmti3_cfg_setup( &xsensmti3_cfg );
    XSENSMTI3_MAP_MIKROBUS( xsensmti3_cfg, MIKROBUS_1 );
    if ( UART_ERROR == xsensmti3_init( &xsensmti3, &xsensmti3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the received data and parses it. Shows Roll, Pitch and Yaw data.


void application_task ( void ) 
{
    uint8_t check_data = 0;
    uint8_t cnt = 0;

    xsensmti3_process( );

    // STARTS COLLECTING DATA
    if ( active_flag == XSENSMTI3_WAIT_FOR_START )
    {
        memset( &current_parser_buf[ 0 ], 0 , PROCESS_PARSER_BUFFER_SIZE );
        parser_buf_cnt = 0;
        active_flag = 0;
        start_rsp = 0;
        rsp_cnt = 0;
        active_flag = XSENSMTI3_START_PROCESS;
    }

    if ( ( parser_buf_cnt > 100 ) && ( active_flag == XSENSMTI3_START_PROCESS ) )
    {
       active_flag = XSENSMTI3_DATA_PROCESSING;
    }

    if ( active_flag == XSENSMTI3_DATA_PROCESSING )
    {
        check_data = xsensmti3_check_package( &current_parser_buf[ 0 ], &start_rsp );
        if ( check_data == XSENSMTI3_OK )
        {
            active_flag = XSENSMTI3_PARSER_DATA;
        }
        else
        {
            active_flag = XSENSMTI3_WAIT_FOR_START;
        }
    }

    if ( active_flag == XSENSMTI3_PARSER_DATA )
    {
       xsensmti3_parser( &current_parser_buf[ 0 ], start_rsp, &parse_data_obj );

       log_printf( &logger, ">> Quaternion data <<\r\n" );

       for ( cnt = 0; cnt < 4; cnt++ )
       {
           log_printf( &logger, ">> Q: %f\r\n", parse_data_obj.quat_obj.quat_data[ cnt ] );
       }

       log_printf( &logger, "--------------\r\n" );

       xsensmti3_get_data( &parse_data_obj.quat_obj, &data_obj );

       log_printf( &logger, ">> ROLL:  %.4f \r\n", data_obj.roll );
       log_printf( &logger, ">> PITCH: %.4f \r\n", data_obj.pitch );
       log_printf( &logger, ">> YAW:   %.4f \r\n", data_obj.yaw );

       active_flag = XSENSMTI3_WAIT_FOR_START;

       log_printf( &logger, "--------------\r\n" );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.XSENSMTi3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

BATT-MAN 3 Click

0

BATT-MAN 3 Click is a compact add-on board representing an advanced battery management solution. This board features the ADP5350, a power management IC with inductive boost LED, and three LDO regulators from Analog Devices. This I2C programmable board supports USB optimized for USB voltage input. It combines one high-performance buck regulator for single Li-Ion/Li-Ion polymer battery charging, a fuel gauge, a highly programmable boost regulator for LED backlight illumination, and three 150mA LDO regulators.

[Learn More]

Thermo 14 Click

0

Thermo 14 Click provides an accuracy of ±0.5°C in the range from -10°C to 60°C.

[Learn More]

Temp-Hum 5 click

5

Temp-Hum 5 click is a temperature and humidity sensing click board, packed with features that allow simple integration into any design. It can measure a wide range of temperature and relative humidity values with high accuracy.

[Learn More]