TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140544 times)
  2. FAT32 Library (73037 times)
  3. Network Ethernet Library (58043 times)
  4. USB Device Library (48215 times)
  5. Network WiFi Library (43826 times)
  6. FT800 Library (43295 times)
  7. GSM click (30359 times)
  8. mikroSDK (28990 times)
  9. PID Library (27116 times)
  10. microSD click (26722 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DRAM Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: DRAM

Downloaded: 183 times

Not followed.

License: MIT license  

DRAM Click is a compact add-on board representing a dynamic random-access memory solution. This board features the APS6404L-3SQR, 64Mb high-performance SPI/QPI PSRAM memory organized as 8M x 8 bits each from AP Memory. This Pseudo-SRAM device features a high speed, low pin count interface and incorporates a seamless self-managed refresh mechanism to maximize the performance of memory read operation. It has 4 SDR I/O pins and operates in SPI or QPI (quad peripheral interface) mode with frequencies up to 133 MHz.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DRAM Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DRAM Click" changes.

Do you want to report abuse regarding "DRAM Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DRAM Click

DRAM Click is a compact add-on board representing a dynamic random-access memory solution. This board features the APS6404L-3SQR, 64Mb high-performance SPI/QPI PSRAM memory organized as 8M x 8 bits each from AP Memory. This Pseudo-SRAM device features a high speed, low pin count interface and incorporates a seamless self-managed refresh mechanism to maximize the performance of memory read operation. It has 4 SDR I/O pins and operates in SPI or QPI (quad peripheral interface) mode with frequencies up to 133 MHz.

dram_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2022.
  • Type : SPI type

Software Support

We provide a library for the DRAM Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DRAM Click driver.

Standard key functions :

  • dram_cfg_setup Config Object Initialization function.

    void dram_cfg_setup ( dram_cfg_t *cfg );
  • dram_init Initialization function.

    err_t dram_init ( dram_t *ctx, dram_cfg_t *cfg );

Example key functions :

  • dram_memory_write This function writes a desired number of data bytes starting from the selected memory address.

    err_t dram_memory_write ( dram_t *ctx, uint32_t address, uint8_t *data_in, uint32_t len );
  • dram_memory_read This function reads a desired number of data bytes starting from the selected memory address.

    err_t dram_memory_read ( dram_t *ctx, uint32_t address, uint8_t *data_out, uint32_t len );
  • dram_memory_read_fast This function reads a desired number of data bytes starting from the selected memory address performing fast read feature.

    err_t dram_memory_read_fast ( dram_t *ctx, uint32_t address, uint8_t *data_out, uint32_t len );

Example Description

This example demonstrates the use of DRAM Click board by writing specified data to the memory and reading it back.

The demo application is composed of two sections :

Application Init

Initializes the driver, resets the device and checks the communication by reading and verifying the device ID.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    dram_cfg_t dram_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dram_cfg_setup( &dram_cfg );
    DRAM_MAP_MIKROBUS( dram_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == dram_init( &dram, &dram_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( DRAM_ERROR == dram_reset ( &dram ) )
    {
        log_error( &logger, " Reset device." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    if ( DRAM_ERROR == dram_check_communication ( &dram ) )
    {
        log_error( &logger, " Check communication." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Writes a desired number of bytes to the memory and then verifies if it is written correctly by reading from the same memory location and displaying the memory content on the USB UART.

void application_task ( void )
{
    uint8_t data_buf[ 128 ] = { 0 };
    log_printf ( &logger, " Memory address: 0x%.6LX\r\n", ( uint32_t ) STARTING_ADDRESS );
    memcpy ( data_buf, DEMO_TEXT_MESSAGE_1, strlen ( DEMO_TEXT_MESSAGE_1 ) );
    if ( DRAM_OK == dram_memory_write ( &dram, STARTING_ADDRESS, data_buf, sizeof ( data_buf ) ) )
    {
        log_printf ( &logger, " Write data: %s\r\n", data_buf );
        Delay_ms ( 100 );
    }
    memset ( data_buf, 0, sizeof ( data_buf ) );
    if ( DRAM_OK == dram_memory_read ( &dram, STARTING_ADDRESS, 
                                             data_buf, sizeof ( data_buf ) ) )
    {
        log_printf ( &logger, " Read data: %s\r\n\n", data_buf );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    log_printf ( &logger, " Memory address: 0x%.6LX\r\n", ( uint32_t ) STARTING_ADDRESS );
    memcpy ( data_buf, DEMO_TEXT_MESSAGE_2, strlen ( DEMO_TEXT_MESSAGE_2 ) );
    if ( DRAM_OK == dram_memory_write ( &dram, STARTING_ADDRESS, data_buf, sizeof ( data_buf ) ) )
    {
        log_printf ( &logger, " Write data: %s\r\n", data_buf );
        Delay_ms ( 100 );
    }
    memset ( data_buf, 0, sizeof ( data_buf ) );
    if ( DRAM_OK == dram_memory_read_fast ( &dram, STARTING_ADDRESS, data_buf, sizeof ( data_buf ) ) )
    {
        log_printf ( &logger, " Fast read data : %s\r\n\n", data_buf );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DRAM

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

A5000 Plug n Trust Click

0

A5000 Plug&Trust Click is a compact add-on board representing a ready-to-use secure IoT authenticator. This board features the A5000, an Edge Lock® Secure Authenticator from NXP Semiconductors. The A5000 provides a root of trust at the IC level, giving an IoT authentication system state-of-the-art security capability. It allows for securely storing and provisioning credentials and performing cryptographic operations for security-critical communication and authentication functions. It has an independent Common Criteria EAL 6+ security certification up to OS level and supports ECC asymmetric cryptographic and AES/3DES symmetric algorithms.

[Learn More]

GNSS Click

0

GNSS Click carries Quectel’s L86 GNSS module with a patch antenna along with an external antenna connector.

[Learn More]

DC Motor 16 Click

0

DC Motor 16 Click is a compact add-on board that contains a high-performance single phase reversible DC motor drive with speed control. This board features the ZXBM5210, a fully-featured DC motor drive solution with an average current capability of up to 700mA from Diodes Incorporated. The ZXBM5210 has several modes of operations selected by two GPIO pins, has a wide supply voltage range from 3V to 18V, and low power consumption.

[Learn More]