We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.10
mikroSDK Library: 2.0.0.0
Category: DRAM
Downloaded: 153 times
Not followed.
License: MIT license
DRAM Click is a compact add-on board representing a dynamic random-access memory solution. This board features the APS6404L-3SQR, 64Mb high-performance SPI/QPI PSRAM memory organized as 8M x 8 bits each from AP Memory. This Pseudo-SRAM device features a high speed, low pin count interface and incorporates a seamless self-managed refresh mechanism to maximize the performance of memory read operation. It has 4 SDR I/O pins and operates in SPI or QPI (quad peripheral interface) mode with frequencies up to 133 MHz.
Do you want to subscribe in order to receive notifications regarding "DRAM Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "DRAM Click" changes.
Do you want to report abuse regarding "DRAM Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5043_dram_click.zip [387.30KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
DRAM Click is a compact add-on board representing a dynamic random-access memory solution. This board features the APS6404L-3SQR, 64Mb high-performance SPI/QPI PSRAM memory organized as 8M x 8 bits each from AP Memory. This Pseudo-SRAM device features a high speed, low pin count interface and incorporates a seamless self-managed refresh mechanism to maximize the performance of memory read operation. It has 4 SDR I/O pins and operates in SPI or QPI (quad peripheral interface) mode with frequencies up to 133 MHz.
We provide a library for the DRAM Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for DRAM Click driver.
dram_cfg_setup
Config Object Initialization function.
void dram_cfg_setup ( dram_cfg_t *cfg );
dram_init
Initialization function.
err_t dram_init ( dram_t *ctx, dram_cfg_t *cfg );
dram_memory_write
This function writes a desired number of data bytes starting from the selected memory address.
err_t dram_memory_write ( dram_t *ctx, uint32_t address, uint8_t *data_in, uint32_t len );
dram_memory_read
This function reads a desired number of data bytes starting from the selected memory address.
err_t dram_memory_read ( dram_t *ctx, uint32_t address, uint8_t *data_out, uint32_t len );
dram_memory_read_fast
This function reads a desired number of data bytes starting from the selected memory address performing fast read feature.
err_t dram_memory_read_fast ( dram_t *ctx, uint32_t address, uint8_t *data_out, uint32_t len );
This example demonstrates the use of DRAM Click board by writing specified data to the memory and reading it back.
The demo application is composed of two sections :
Initializes the driver, resets the device and checks the communication by reading and verifying the device ID.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
dram_cfg_t dram_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
dram_cfg_setup( &dram_cfg );
DRAM_MAP_MIKROBUS( dram_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == dram_init( &dram, &dram_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( DRAM_ERROR == dram_reset ( &dram ) )
{
log_error( &logger, " Reset device." );
for ( ; ; );
}
Delay_ms ( 100 );
if ( DRAM_ERROR == dram_check_communication ( &dram ) )
{
log_error( &logger, " Check communication." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Writes a desired number of bytes to the memory and then verifies if it is written correctly by reading from the same memory location and displaying the memory content on the USB UART.
void application_task ( void )
{
uint8_t data_buf[ 128 ] = { 0 };
log_printf ( &logger, " Memory address: 0x%.6LX\r\n", ( uint32_t ) STARTING_ADDRESS );
memcpy ( data_buf, DEMO_TEXT_MESSAGE_1, strlen ( DEMO_TEXT_MESSAGE_1 ) );
if ( DRAM_OK == dram_memory_write ( &dram, STARTING_ADDRESS, data_buf, sizeof ( data_buf ) ) )
{
log_printf ( &logger, " Write data: %s\r\n", data_buf );
Delay_ms ( 100 );
}
memset ( data_buf, 0, sizeof ( data_buf ) );
if ( DRAM_OK == dram_memory_read ( &dram, STARTING_ADDRESS,
data_buf, sizeof ( data_buf ) ) )
{
log_printf ( &logger, " Read data: %s\r\n\n", data_buf );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
log_printf ( &logger, " Memory address: 0x%.6LX\r\n", ( uint32_t ) STARTING_ADDRESS );
memcpy ( data_buf, DEMO_TEXT_MESSAGE_2, strlen ( DEMO_TEXT_MESSAGE_2 ) );
if ( DRAM_OK == dram_memory_write ( &dram, STARTING_ADDRESS, data_buf, sizeof ( data_buf ) ) )
{
log_printf ( &logger, " Write data: %s\r\n", data_buf );
Delay_ms ( 100 );
}
memset ( data_buf, 0, sizeof ( data_buf ) );
if ( DRAM_OK == dram_memory_read_fast ( &dram, STARTING_ADDRESS, data_buf, sizeof ( data_buf ) ) )
{
log_printf ( &logger, " Fast read data : %s\r\n\n", data_buf );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.