We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.17
mikroSDK Library: 2.0.0.0
Category: Optical
Downloaded: 298 times
Not followed.
License: MIT license
Color 9 Click is a very accurate color sensing Click board which features the APDS-9250, IR and ambient light sensor, from Broadcom. It contains a specially designed matrix of photosensitive elements, which can sense red, green, blue and IR component.
Do you want to subscribe in order to receive notifications regarding "Color 9 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Color 9 Click" changes.
Do you want to report abuse regarding "Color 9 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3317_color_9_click.zip [440.45KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Color 9 Click is a very accurate color sensing Click board� which features the APDS-9250, IR and ambient light sensor, from Broadcom. It contains a specially designed matrix of photosensitive elements, which can sense red, green, blue and IR component.
We provide a library for the Color9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Color9 Click driver.
Config Object Initialization function.
void color9_cfg_setup ( color9_cfg_t *cfg );
Initialization function.
COLOR9_RETVAL color9_init ( color9_t ctx, color9_cfg_t cfg );
This function gets Green measurement reading.
uint32_t color9_get_green ( color9_t* ctx );
This function gets Blue measurement reading.
uint32_t color9_get_blue ( color9_t* ctx );
This function gets Red measurement reading.
uint32_t color9_get_red ( color9_t* ctx );
This example reads data from the sensor, and then logs IR, green, blue and red measurements.
The demo application is composed of two sections :
Initialize the driver and test if the sensor is present. If the ID read from the sensor is correct execute the initialization procedure.
void application_init ( void )
{
log_cfg_t log_cfg;
color9_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
color9_cfg_setup( &cfg );
COLOR9_MAP_MIKROBUS( cfg, MIKROBUS_1 );
color9_init( &color9, &cfg );
ID = color9_read( &color9, COLOR9_PART_ID );
if ( ID == 0xB2 )
{
log_printf( &logger, "Register ID 0x%x\r\n", ID );
color9_meas_rate( &color9, COLOR9_LS_MEAS_BITWIDTH_13, COLOR9_LS_MEAS_RATE_1000ms );
color9_reg_ctrl( &color9, COLOR9_MAIN_CTRL_CS_MODE | COLOR9_MAIN_CTRL_LS_EN );
}
else
{
log_printf( &logger, "Error\r\n" );
while ( 1 );
}
}
Wait for the color data to be available then read the data and send it to the serial port.
void application_task ( void )
{
conv_complete = color9_get_status_reg( &color9 );
if ( conv_complete & 0x08 )
{
conv_complete = 0;
measurement_data = color9_get_Ir( &color9 );
log_printf( &logger, "Ir: %d\r\n", measurement_data );
measurement_data = color9_get_green( &color9 );
log_printf(&logger, "Green: %d\r\n", measurement_data);
measurement_data = color9_get_blue( &color9 );
log_printf(&logger, "Blue: %d\r\n", measurement_data);
measurement_data = color9_get_red( &color9 );
log_printf(&logger, "Red: %d\r\n", measurement_data);
}
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.