TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141327 times)
  2. FAT32 Library (74155 times)
  3. Network Ethernet Library (58738 times)
  4. USB Device Library (48834 times)
  5. Network WiFi Library (44544 times)
  6. FT800 Library (44126 times)
  7. GSM click (30858 times)
  8. mikroSDK (29699 times)
  9. PID Library (27359 times)
  10. microSD click (27273 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UPS Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 319 times

Not followed.

License: MIT license  

UPS Click is a supercapacitor charger Click that provides continuous power for a load connected to the output terminals.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UPS Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UPS Click" changes.

Do you want to report abuse regarding "UPS Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UPS Click

UPS Click is a supercapacitor charger Click that provides continuous power for a load connected to the output terminals.

ups_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the Ups Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ups Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ups_cfg_setup ( ups_cfg_t *cfg );

  • Initialization function.

    UPS_RETVAL ups_init ( ups_t ctx, ups_cfg_t cfg );

Example key functions :

  • Functions for settings chip mode

    void usp_set_mode ( ups_t *ctx, uint8_t mode );

  • Functions for reading PGD state

    uint8_t ups_get_power_good ( ups_t *ctx );

Examples Description

This application is charger, that provides continuous power for a load connected to the output terminals.

The demo application is composed of two sections :

Application Init

Initializes Driver init and setting chip mode as ACTIVE


void application_init ( void )
{
    log_cfg_t log_cfg;
    ups_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    ups_cfg_setup( &cfg );
    UPS_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ups_init( &ups, &cfg );

    usp_set_mode( &ups, UPS_MODE_ACTIVE );
}

Application Task

Checks the state of PGD (Power Good), PGD goes high when Vout is within 6% of target value (4.98V)


void application_task ( )
{
    uint8_t pgd_state;

    pgd_state = ups_get_power_good( &ups );

    if ( pgd_state != 0 )
    {
        log_printf( &logger, "---> Power Good \r\n" );
    }
    Delay_1sec( );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ups

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thermo 19 Click

0

Thermo 19 Click is a compact add-on board that provides an accurate temperature measurement. This board features the MAX31825, a temperature sensor that provides 8-bit to 12-bit Celsius temperature measurements with better than ±1.75°C from -45°C to +145°C from Analog Devices. It has a unique 64-bit serial code stored in an on-chip ROM, an alarm output for detection of temperature faults, temperature resolution selection from 8 to 12 bits, and it allows temperature conversion to 10-bit digital word in a period of 80ms (max).

[Learn More]

Calypso Click

0

Calypso Click is a compact add-on board for wireless connectivity in embedded applications. This board features the WIRL-WIFS Calypso WLAN module (2610011025000) from Würth Elektronik, which supports IEEE 802.11 b/g/n standards and includes a fully integrated TCP/IP stack. It also features edge castellated connections, a smart antenna configuration, and supports both IPv4 and IPv6 protocols, including SNTP, DHCP, mDNS, HTTP(S), and MQTT, offering secure connectivity with six simultaneous secure sockets, secure boot, and OTA updates.

[Learn More]

Fingerprint 2 Click

0

Fingerprint 2 Click is a new fingerprint scanner Click board simplified for everyone's use and it's very easy to implement! This add-on board consists of a high-speed Nuvoton processor which carries high-performance fingerprint algorithm developed for on-board A-172-MRQ fingerprint sensor from company ByNew Technology Inc. This board can be used as a standalone device when connected over USB to PC or it can be controlled by the MCU/processor over serial UART interface.

[Learn More]