TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142125 times)
  2. FAT32 Library (75425 times)
  3. Network Ethernet Library (59569 times)
  4. USB Device Library (49557 times)
  5. Network WiFi Library (45363 times)
  6. FT800 Library (45005 times)
  7. GSM click (31486 times)
  8. mikroSDK (30569 times)
  9. microSD click (27904 times)
  10. PID Library (27637 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

PWM Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: PWM

Downloaded: 592 times

Not followed.

License: MIT license  

PWM Click is a simple solution for controlling 16 PWM outputs through a single I2C interface. You can use it to control anything from a simple LED strip to a complex robot with a multitude of moving parts.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "PWM Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "PWM Click" changes.

Do you want to report abuse regarding "PWM Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


PWM Click

PWM Click is a simple solution for controlling 16 PWM outputs through a single I2C interface. You can use it to control anything from a simple LED strip to a complex robot with a multitude of moving parts.

pwm_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Pwm Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pwm Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pwm_cfg_setup ( pwm_cfg_t *cfg );

  • Initialization function.

    PWM_RETVAL pwm_init ( pwm_t ctx, pwm_cfg_t cfg );

Example key functions :

  • Device configuration function.

    void pwm_dev_config ( pwm_t *ctx, uint8_t chann_id, uint8_t state );

  • Set channel raw function.

    void pwm_set_channel_raw ( pwm_t *ctx, uint8_t chann_id, uint16_t raw_off_set, uint16_t raw_dc );

  • Set all channels raw function.

    void pwm_set_all_raw ( pwm_t *ctx, uint16_t raw_dc );

Examples Description

This is an example that shows some of the functions that PWM Click has.

The demo application is composed of two sections :

Application Init

Initalizes I2C driver, enables output, configures device, sets prescaling, configures output and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    pwm_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pwm_cfg_setup( &cfg );
    PWM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pwm_init( &pwm, &cfg );
    Delay_ms ( 100 );

    pwm_set_output( &pwm, PWM_ENABLE );
    pwm_dev_config( &pwm, &config0 );
    pwm_set_pre_scale( &pwm, 0x04 );
    pwm_dev_config( &pwm, &config1 );
    pwm_output_config( &pwm,  &config2 );
    Delay_ms ( 100 );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " PWM  Click \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
}

Application Task

Changes the duty cycle of all channels every 10 seconds. All data are being logged on USB UART where you can track their changes.


void application_task ( void )
{
    uint8_t chann_id;

    pwm_set_all_raw( &pwm, PWM_MAX_RESOLUTION / 2 );
    log_printf( &logger, "All Channels set to 50%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    for ( chann_id = 0; chann_id < 8; chann_id++ )
    {
        pwm_set_channel_raw( &pwm, chann_id, 0, PWM_MAX_RESOLUTION / 4 );
    }
    log_printf( &logger, "Channels 0-7 set to 25%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    for ( chann_id = 0; chann_id < 8; chann_id++ )
    {
        pwm_set_channel_raw( &pwm, chann_id, 0, ( PWM_MAX_RESOLUTION / 4 ) * 3 );
    }
    log_printf( &logger, "Channels 0-7 set to 75%% duty cycle \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    pwm_all_chann_state( &pwm, 0 );
    log_printf( &logger, "All Channels disabled \r\n " );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pwm

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

HAPTIC 3 Click

0

Haptic 3 Click is a compact add-on board that uses advanced vibration patterns and waveforms to convey information to a user. This board features the DA7282, a linear resonant actuator (LRA), and an eccentric rotating mass (ERM) haptic driver from Dialog Semiconductor. The DA7282 features LRA or ERM drive capability with automatic closed-loop LRA resonant frequency tracking, guaranteeing consistency across LRA production tolerances. It also offers wideband operation that fully utilizes the capabilities of newer wideband and multi-directional LRAs, alongside three external general-purpose inputs for triggering up to six independent haptic sequences.

[Learn More]

4x4 RGB 2 Click

0

4x4 RGB 2 Click is a compact add-on board that contains a matrix of 16 intelligent RGB LEDs, forming a 4x4 display screen. This board features 16 IN-PC55TBTRGB, 5x5mm RGB LEDs with an integrated IC from Inolux. The LEDs feature an 8-bit color control in 256 steps (256-level greyscale) and a 5-bit brightness control in 32 steps. The intelligent LEDs are cascaded (daisy-chained); thus, every one of them can communicate with the host MCU using the same data lines.

[Learn More]

GPS Click

0

GPS Click is a compact solution for adding GPS functionality to your device. It carries the u-blox LEA-6S high-performance position engine.

[Learn More]