TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136853 times)
  2. FAT32 Library (69999 times)
  3. Network Ethernet Library (55994 times)
  4. USB Device Library (46293 times)
  5. Network WiFi Library (41896 times)
  6. FT800 Library (41204 times)
  7. GSM click (29012 times)
  8. PID Library (26423 times)
  9. mikroSDK (26394 times)
  10. microSD click (25385 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Led ring R click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: LED matrix

Downloaded: 154 times

Not followed.

License: MIT license  

This library contains API for LedringR Click driver.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Led ring R click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Led ring R click" changes.

Do you want to report abuse regarding "Led ring R click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Led ring R click

LED ring R click is a mikroBUS™ add-on board with a ring of 32 red LEDs driven by four 74HC595 serial-in, parallel-out shift registers.

ledringr_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : SPI type

Software Support

We provide a library for the LedringR Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedringR Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ledringr_cfg_setup ( ledringr_cfg_t *cfg );

  • Initialization function.

    LEDRINGR_RETVAL ledringr_init ( ledringr_t ctx, ledringr_cfg_t cfg );

  • Generic transfer function.

    void ledringr_generic_transfer ( ledringr_t ctx, spi_master_transfer_data_t block );

Example key functions :

  • Generic write function.

    void ledringr_write_data ( ledringr_t *ctx, uint32_t data_to_write );

  • Turn On LED by position.

    void ledringr_turn_on_led ( ledringr_t *ctx, uint8_t led_position );

  • Set led.

    void ledringr_led_ring_set ( ledringr_t *ctx );

Examples Description

LED ring R click is a mikroBUS™ add-on board with a ring of 32 red LEDs driven.

The demo application is composed of two sections :

Application Init

Initializes SPI driver and performs device configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ledringr_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    ledringr_cfg_setup( &cfg );
    LEDRINGR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ledringr_init( &ledringr, &cfg );
}

Application Task

Show functionality of Led_Ring_R Click, rotating and turn on/off led's, using the SPI interface.


void application_task ( void )
{
    uint32_t ring_led_on = 0x00000001;
    uint8_t ring_led_counter;
    uint8_t number_led;

    ledringr_led_ring_set( &ledringr );

    for ( ring_led_counter = 32; ring_led_counter > 0; ring_led_counter--)
    {
        ledringr_turn_on_led( &ledringr, ring_led_counter );
        Delay_100ms( );
    }

    Delay_100ms( );

    while ( ring_led_on < 0xFFFFFFFF )
    {
        ledringr_write_data( &ledringr, ring_led_on );
        ring_led_on = ring_led_on | (ring_led_on << 1);
        Delay_100ms( );
    }
    ledringr_write_data( &ledringr, ring_led_on );

    while ( ring_led_on > 0x00000001 )
    {
        ledringr_write_data( &ledringr, ring_led_on );
        ring_led_on = ring_led_on >> 1;
        Delay_100ms( );
    }
    ledringr_write_data( &ledringr, ring_led_on );

    Delay_100ms( );

    ring_led_on = 0x11111111;
    for ( ring_led_counter = 0; ring_led_counter < 32; ring_led_counter++ )
    {
        ledringr_write_data( &ledringr, ring_led_on );

        ring_led_on *= 2;

        if ( ring_led_on == 0x88888888 )
        {
            ring_led_on = 0x11111111;
        }

        Delay_100ms( );
    }

    for ( ring_led_counter = 0; ring_led_counter < 16; ring_led_counter++ )
    {
        ledringr_write_data( &ledringr, 0xAAAAAAAA );
        Delay_100ms( );

        ledringr_write_data( &ledringr, 0x55555555 );
        Delay_100ms( );
    }

    ledringr_led_ring_reset( &ledringr );

    Delay_1sec( );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedringR

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

EnOcean Click

1

EnOcean click carries a TCM310 transceiver, which is a bidirectional gateway for EnOcean’s 868 MHz radio systems. The click is designed to run on a 3.3V power supply. It communicates with the target MCU through UART (TX, RX pins), with additional functionality provided by RST and EN pins.

[Learn More]

MCP2518FD click

5

MCP2518FD Click is a compact add-on board representing a complete CAN solution used as a control node in a CAN network. This board features the MCP2518FD, an external CAN FD controller with an SPI interface, and a high-speed CAN transceiver, the ATA6563, both from Microchip. The ATA6563, a low-level physical layer IC (PHY), provides a physical connection with the CAN bus itself, while the CAN controller MCP2518FD represents an interface between the MCU and the PHY. It features three operating modes with dedicated fail-safe features, remote wake-up via CAN, and ideally passive behavior when powered off on the CAN bus. This Click boardâ„¢ is suitable for developing a wide range of automotive diagnostic applications, even on MCUs that do not natively support CAN interface.

[Learn More]

AES in TM4C129XNCZAD

5

Demonstration of Advanced Encryption Standard (AES) cryptographic hardware-accelerated module in TIVA TM4C129XNCZAD mcu. Library and example written by Milan Tepic from our Intern's lab. For detailed information see the comments in source code.

[Learn More]