TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141964 times)
  2. FAT32 Library (75171 times)
  3. Network Ethernet Library (59423 times)
  4. USB Device Library (49418 times)
  5. Network WiFi Library (45228 times)
  6. FT800 Library (44820 times)
  7. GSM click (31388 times)
  8. mikroSDK (30372 times)
  9. microSD click (27741 times)
  10. PID Library (27596 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 14 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 395 times

Not followed.

License: MIT license  

Accel 14 Click is digital acceleration and vibration sensor Click board™. It features an ultra-wide bandwidth, low-noise, 3-axis digital vibration sensor, labeled as IIS3DWB, from STMicroelectronics. This Click board™ allows selectable full-scale acceleration measurements in ranges of ±2 g, ±4 g, ±8, and ±16 g in three axes, and it’s capable of measuring accelerations with a bandwidth up to 6 kHz with an output data rate of 26.7 kHz.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 14 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 14 Click" changes.

Do you want to report abuse regarding "Accel 14 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Accel 14 Click

Accel 14 Click is digital acceleration and vibration sensor Click board™. It features an ultra-wide bandwidth, low-noise, 3-axis digital vibration sensor, labeled as IIS3DWB, from STMicroelectronics. This Click board™ allows selectable full-scale acceleration measurements in ranges of ±2 g, ±4 g, ±8, and ±16 g in three axes, and it’s capable of measuring accelerations with a bandwidth up to 6 kHz with an output data rate of 26.7 kHz.

accel14_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jul 2020.
  • Type : SPI type

Software Support

We provide a library for the Accel14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Accel14 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void accel14_cfg_setup ( accel14_cfg_t *cfg );

  • Initialization function.

    ACCEL14_RETVAL accel14_init ( accel14_t ctx, accel14_cfg_t cfg );

  • Click Default Configuration function.

    void accel14_default_cfg ( accel14_t *ctx );

Example key functions :

  • Check accel data ready function.

    uint8_t accel14_check_accel_data_ready ( accel14_t *ctx );

  • Get temperature function.

    float accel14_get_temperature ( accel14_t *ctx );

  • Read Accel data function

    void accel14_read_accel ( accel14_t ctx, accel14_accel_fs_xl_t accel_fs );

Examples Description

This application measures accelermeter data.

The demo application is composed of two sections :

Application Init

SPI, check device ID, sets default configuration, also write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    accel14_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    accel14_cfg_setup( &cfg );
    ACCEL14_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    accel14_init( &accel14, &cfg );

    Delay_ms ( 100 );

    log_printf( &logger, "   Driver init done   \r\n" );
    log_printf( &logger, "--------------------- \r\n" );
    log_printf( &logger, " Communication check  \r\n" );

    if ( accel14_check_communication( &accel14 ) == ACCEL14_CHECK_ID_SUCCESS )
    {
        log_printf( &logger, "       SUCCESS        \r\n" );
        log_printf( &logger, "--------------------- \r\n" );
    }
    else
    {
        log_printf( &logger, "        ERROR         \r\n" );
        log_printf( &logger, "   Reset the device   \r\n" );
        log_printf( &logger, "--------------------- \r\n" );
        for ( ; ; );
    }

    log_printf( &logger, " Set default config.  \r\n" );
    log_printf( &logger, "--------------------- \r\n" );
    accel14_default_cfg( &accel14 );
    Delay_ms ( 100 );

    log_printf( &logger, "  Acceleration data:  \r\n" );
    log_printf( &logger, "--------------------- \r\n" );
}

Application Task

This is an example which demonstrates the use of Accel 14 Click board. Measured and display Acceleration data for X-axis, Y-axis and Z-axis. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 1 sec.


void application_task ( void )
{
    data_ready_flag = accel14_check_accel_data_ready( &accel14 );
    Delay_ms ( 10 );

    if ( data_ready_flag == ACCEL14_NEW_DATA_AVAILABLE )
    {
        accel14_get_data ( &accel14, &accel_data );

        log_printf( &logger, "  Accel X : %d \r\n", accel_data.x );
        log_printf( &logger, "  Accel Y : %d \r\n", accel_data.y );
        log_printf( &logger, "  Accel Z : %d \r\n", accel_data.z );
        log_printf( &logger, "--------------------- \r\n" );
        Delay_ms ( 1000 );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel14

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

4G LTE click

6

4G LTE-E click carries the LARA-R211 multi-mode cellular module from u-blox. The board is designed to use 5V power supply. I/O voltage levels could be 3.3V or 5V. It communicates with the target microcontroller over UART interface

[Learn More]

DC Motor 26 Click

0

DC Motor 26 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9053FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9053FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

[Learn More]

Flame click

5

Flame click is a fire detection solution sensitive only to infrared light. To use it as a fire alarm, set up the exact detection threshold through the onboard potentiometer (once reached, the click will send an interrupt to the target board MCU through the mikroBUS INT pin).

[Learn More]