TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141914 times)
  2. FAT32 Library (75062 times)
  3. Network Ethernet Library (59357 times)
  4. USB Device Library (49352 times)
  5. Network WiFi Library (45169 times)
  6. FT800 Library (44735 times)
  7. GSM click (31307 times)
  8. mikroSDK (30271 times)
  9. microSD click (27689 times)
  10. PID Library (27577 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Barometer Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 403 times

Not followed.

License: MIT license  

This application measures temperature and pressure data.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Barometer Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Barometer Click" changes.

Do you want to report abuse regarding "Barometer Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Barometer Click

Barometer Click carries the LPS25HB IC, which is a piezoresistive absolute pressure sensor with a measurement range from 260 to 1260 hPa.

barometer_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the Barometer Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Barometer Click driver.

Standard key functions :

  • Config Object Initialization function.

    void barometer_cfg_setup ( barometer_cfg_t *cfg );

  • Initialization function.

    BAROMETER_RETVAL barometer_init ( barometer_t ctx, barometer_cfg_t cfg );

  • Click Default Configuration function.

    void barometer_default_cfg ( barometer_t *ctx );

Example key functions :

  • Read temperature in degrees Celsius function

    float barometer_get_temperature_c ( barometer_t *ctx );

  • Read pressure in milibars function

    float barometer_get_pressure( barometer_t *ctx );

  • Check sensor status function

    uint8_t barometer_check_status ( barometer_t *ctx );

Examples Description

This application measures temperature and pressure data.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C, set default configuration and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    barometer_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    barometer_cfg_setup( &cfg );
    BAROMETER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    barometer_init( &barometer, &cfg );

    barometer_default_cfg( &barometer );

    // Check sensor id
    if ( barometer_check_id( &barometer ) != BAROMETER_DEVICE_ID )
    {
        log_printf( &logger, "   ERROR  \r\n " );
    }
    else
    {
        log_printf( &logger, "   Initialization  \r\n" );
    }

    log_printf( &logger, "-------------------------------- \r\n" );
    Delay_100ms( );
}

Application Task

This is a example which demonstrates the use of Barometer Click board


void application_task ( void )
{
    float temperature_c;
    float pressure;

    temperature_c = barometer_get_temperature_c( &barometer );
    Delay_100ms( );

    pressure = barometer_get_pressure( &barometer );
    Delay_100ms( );

    log_printf( &logger, " Temperature : %.2f\r\n", temperature_c );

    log_printf( &logger, " Pressure    : %.2f\r\n", pressure );
    log_printf( &logger, "-------------------------------- \r\n" );

    Delay_1sec( );
}

ALSO FROM THIS AUTHOR

Force Click

0

Force Click is a mikroBUS™ add-on board with circuitry for implementing Interlink Electronics’ Force Sensing Resistors into your projects (with a single zone force sensing resistor included with the Click). The Force Sensing Resistor is a thin sensor made of two membranes that are separated by a spacer around the edges.

[Learn More]

Charger 11 Click

0

Charger 11 Click is a LiFePO4 (lithium iron phosphate) battery charger. This Click can be used for Low-Cost LiFePO4 battery chargers, or Power Tools, toys, backup energy storage solutions, etc. Charger 11 is based on MCP73123T controller which has some extra features enabling charging without too much hassle. This Click board has charging current control which uses SPI interface through MCP4161 IC, which is an 8-bit digital potentiometer.

[Learn More]

Smart DOF 5 Click

0

Smart DOF 5 Click is a compact add-on board designed for precise motion and orientation detection in automotive applications. This board features the ASM330LHHXG1, a high-accuracy 6-axis inertial measurement unit (IMU) from STMicroelectronics. It features a 3-axis accelerometer and a 3-axis gyroscope and supports dual operating modes (high-performance and low-power) with flexible communication options through SPI or I2C interfaces. Additionally, it includes the Click Snap format, enabling the autonomous use of the Snap section and integration of external sensors via the I2C Master interface.

[Learn More]