TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140766 times)
  2. FAT32 Library (73351 times)
  3. Network Ethernet Library (58196 times)
  4. USB Device Library (48380 times)
  5. Network WiFi Library (43975 times)
  6. FT800 Library (43537 times)
  7. GSM click (30466 times)
  8. mikroSDK (29170 times)
  9. PID Library (27166 times)
  10. microSD click (26847 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Expand Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Port expander

Downloaded: 294 times

Not followed.

License: MIT license  

This applicatioin use for expansion I/O lines

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Expand Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Expand Click" changes.

Do you want to report abuse regarding "Expand Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Expand Click

< Expand Click is an accessory board in mikroBUS form factor. It includes a 16-bit I/O expander MCP23S17 with SPI clock speeds up to 10 MHz for higher throughput applications >

expand_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : SPI type

Software Support

We provide a library for the Expand Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Expand Click driver.

Standard key functions :

  • Config Object Initialization function.

    void expand_cfg_setup ( expand_cfg_t *cfg );

  • Initialization function.

    EXPAND_RETVAL expand_init ( expand_t ctx, expand_cfg_t cfg );

Example key functions :

  • Set expander PORTA direction function.

    void expand_set_direction_port_a ( expand_t *ctx, uint8_t mod_cmd, uint8_t write_data );

  • Write one byte of data to register for PORTA function.

    void expand_write_port_a ( expand_t *ctx, uint8_t mod_cmd, uint8_t write_data );

  • Reset function.

    void expand_reset ( expand_t *ctx );

Examples Description

This applicatioin use for expansion I/O lines.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO, reset MCP23S17 chip, set PORTA to be output and PORTB to be input, set default configuration and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    expand_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    expand_cfg_setup( &cfg );
    EXPAND_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    expand_init( &expand, &cfg );

    expand_default_configuration( &expand, EXPAND_SPI_MODULE_POSITION_0 );

    expand_set_direction_port_a( &expand, EXPAND_SPI_MODULE_POSITION_0, EXPAND_PORT_DIRECTION_OUTPUT );

    expand_set_direction_port_b( &expand, EXPAND_SPI_MODULE_POSITION_0, EXPAND_PORT_DIRECTION_INPUT );

    expand_set_pull_ups_port_b( &expand, EXPAND_SPI_MODULE_POSITION_0, 0xFF );
}

Application Task

This is a example which demonstrates the use of Expand Click board. Expand Click communicates with register via SPI protocol by write and read from register, set configuration and state and read configuration and state. Results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart for aproximetly every 500 ms.


void application_task ( void )
{
    pin_position = 1;

    for ( position = 0; position < 8; position++ )
    {
        expand_write_port_a( &expand, EXPAND_SPI_MODULE_POSITION_0, pin_position );
        log_printf( &logger, " PA%d set\r\n", (uint16_t) position );

        port_status = expand_read_port_b( &expand, EXPAND_SPI_MODULE_POSITION_0 );

        log_printf( &logger, " Status PB (input) : %d  \r\n", (uint16_t) port_status );
        log_printf( &logger, "----------------\r\n" );

        pin_position <<= 1;

        Delay_ms ( 500 );
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Expand

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Digi Pot 4 Click

0

DIGI POT 4 Click is a digitally controlled dual potentiometer, with the resistance of 10KΩ. It has a 10bit resolution which allows for a very smooth linear wiper positioning through 1024 steps.

[Learn More]

3D Hall 6 click

5

3D Hall 6 Click is a very accurate, magnetic field sensing Click board, used to measure the intensity of the magnetic field across three perpendicular axes. It is equipped with the MLX90380, a monolithic contactless sensor IC sensitive to the flux density applied orthogonally and parallel to the IC surface, from Melexis.

[Learn More]

GNSS 16 Click

0

GNSS 16 Click is a compact add-on board that delivers meter-level accuracy in urban environments. This Click board™ features the NEO-F10N-00B, a professional-grade L1/L5 dual-band GNSS receiver from u-blox. It features dual-band multipath mitigation technology to ensure robust signal reception and supports multiple GNSS systems, including GPS, Galileo, and BeiDou. Configurable for specific constellations, it optimizes power consumption while maintaining high performance.

[Learn More]