TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136881 times)
  2. FAT32 Library (70003 times)
  3. Network Ethernet Library (55999 times)
  4. USB Device Library (46305 times)
  5. Network WiFi Library (41929 times)
  6. FT800 Library (41208 times)
  7. GSM click (29013 times)
  8. PID Library (26423 times)
  9. mikroSDK (26398 times)
  10. microSD click (25386 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thumbstick click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Pushbutton/Switches

Downloaded: 197 times

Not followed.

License: MIT license  

Thumbstick click is a high precision input device.It features a dual axis, spring return, pushbutton enabled joystick, and a MCP3204 12-bit A/D converter.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thumbstick click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thumbstick click" changes.

Do you want to report abuse regarding "Thumbstick click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thumbstick click

Thumbstick click is a high precision input device. It features a dual axis, spring return, pushbutton enabled joystick (similar to the ones used on joypads on popular gaming consoles), and a MCP3204 12-bit A/D converter.

It features a dual axis, spring return, pushbutton enabled joystick, and a MCP3204 12-bit A/D converter.

thumbstick_click.png

click Product page


Click library

  • Author : Katarina Perendic
  • Date : okt 2019.
  • Type : SPI type

Software Support

We provide a library for the Thumbstick Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thumbstick Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thumbstick_cfg_setup ( thumbstick_cfg_t *cfg );

  • Initialization function.

    THUMBSTICK_RETVAL thumbstick_init ( thumbstick_t ctx, thumbstick_cfg_t cfg );

Example key functions :

  • Get state of thumbstick button function

    uint8_t thumbstick_button_state( thumbstick_t *ctx );

  • Get thumbstick position by axis function

    void thumbstick_get_position ( thumbstick_t ctx, thumbstick_position_t position );

  • Generic read 2 byte of data function uint16_t thumbstick_read_rawadc ( thumbstick_t *ctx, uint8_t type, uint8_t channel );

Examples Description

The demo application shows clickboard axis postioning and button state.

The demo application is composed of two sections :

Application Init

Initialization of click board's and log's objects.

void application_init ( void )
{
    log_cfg_t log_cfg;
    thumbstick_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    thumbstick_cfg_setup( &cfg );
    THUMBSTICK_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thumbstick_init( &thumbstick, &cfg );

    thumbstick_set_sensitivity( POSTION_SENS_DEFAULT );

    thumbstick_get_position( &thumbstick, &old_pos );
    old_butt_state = thumbstick_button_state( &thumbstick );
    timer_cnt = 0;
    change_state = false;
}

Application Task

It reads the position of the thumbstick:

  • You will get data on log on every change of thumbstick axis position, or if you hold thumbstick in one postion it will repeat the same log when timer reaches timeout.
  • You will get data on log whenever you press thumbstick button and release it.
void application_task ( void )
{
    //Button pressed
    button_state = thumbstick_button_state( &thumbstick );

    if ( old_butt_state != button_state )
    {
        if ( button_state == THUMBSTICK_PRESS_BUTTON )
        {
            log_printf( &logger, ">> Button is pressed \r\n" );
            Delay_ms ( 100 );
        }
        else
        {
            log_printf( &logger, ">> Button is released \r\n" );
            Delay_ms ( 100 );
        }
        old_butt_state = button_state;
    }

    //Thumbstick postion
    thumbstick_get_position( &thumbstick, &thumbstick_pos );

    if ( ( old_pos.vertical != thumbstick_pos.vertical ) || ( timer_cnt >= TIMER_FLAG ) )
    {
        if ( thumbstick_pos.vertical == THUMBSTICK_POSITION_TOP )
        {
            log_printf( &logger, ">> TOP \r\n" );
            change_state = true;
        }
        else if ( thumbstick_pos.vertical == THUMBSTICK_POSITION_BOTTOM )
        {
            log_printf( &logger, ">> BOTTOM \r\n" );
            change_state = true;
        }

        old_pos = thumbstick_pos;
    }

    if ( (old_pos.horizontal != thumbstick_pos.horizontal ) || ( timer_cnt >= TIMER_FLAG )  )
    {
        if ( thumbstick_pos.horizontal == THUMBSTICK_POSITION_LEFT )
        {
            log_printf( &logger, ">> LEFT \r\n" );
            change_state = true;
        }
        else if ( thumbstick_pos.horizontal == THUMBSTICK_POSITION_RIGHT )
        {
            log_printf( &logger, ">> RIGHT \r\n" );
            change_state = true;
        }

        old_pos = thumbstick_pos;
    }

    if ( ( timer_cnt >= TIMER_FLAG ) || ( change_state == true )  )
    {
        timer_cnt = 0;
        change_state = false;
    }

    timer_cnt++;
    Delay_ms ( 1 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thumbstick

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Temp-Hum 5 click

5

Temp-Hum 5 click is a temperature and humidity sensing click board, packed with features that allow simple integration into any design. It can measure a wide range of temperature and relative humidity values with high accuracy.

[Learn More]

HAPTIC 3 click

0

Haptic 3 Click is a compact add-on board that uses advanced vibration patterns and waveforms to convey information to a user. This board features the DA7282, a linear resonant actuator (LRA), and an eccentric rotating mass (ERM) haptic driver from Dialog Semiconductor. The DA7282 features LRA or ERM drive capability with automatic closed-loop LRA resonant frequency tracking, guaranteeing consistency across LRA production tolerances. It also offers wideband operation that fully utilizes the capabilities of newer wideband and multi-directional LRAs, alongside three external general-purpose inputs for triggering up to six independent haptic sequences.

[Learn More]

RTC 18 click

0

RTC 18 Click is a compact add-on board that accurately keeps the time of a day. This board features the RV-3032-C7, an I2C-configurable real-time clock module that incorporates an integrated CMOS circuit and an XTAL from Micro Crystal AG. The RV-3032-C7 is a temperature compensated RTC with premium accuracy (0.22 sec/day) and extremely low power consumption, allowing it to be used with a single button cell battery for an extended period. It can measure temperature with a typical accuracy of ±1°C and a resolution of 0.0625°C/step with a programmable alarm on top and bottom temperature limits. It features standard RTC functions with automatic leap year correction, and standard interrupt for Periodic Countdown Timer and Periodic Time Update (seconds, minutes), date/hour/minute alarm, and an external event.

[Learn More]